A Rough Set based Feature Selection Algorithm for Effective Intrusion Detection in Cloud Model
نویسندگان
چکیده
There exist many problems in intrusion detection systems such as large data volume, features and data redundancy which seriously affect the efficiency of the detection algorithm. Such problems need to be addressed in developing reliable intrusion detection systems. In this paper, we propose an intrusion detection model that combines Rough Set based Feature Selection Algorithm and Fuzzy SVM for effective intrusion detection in the Cloud. The algorithm evaluates the characteristics of the attribute weights for security in the Cloud model and generates an optimal number of features in order to achieve best trade-off between detection rate and false alarm rate by using rough sets. This model solves the problem of feature redundancy and hence helps to improve the speed of evaluation. The experimental results obtained from this work show that the proposed model solves the feature selection problem and classification for intrusion detection effectively. It also achieves better detection performance for various types of attacks with reduced detection time.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملA Novel Cloud Intrusion Detection System Using Feature Selection and Classification
This paper proposes a new cloud intrusion detection system for detecting the intruders in a traditional hybrid virtualized, cloud environment. The paper introduces an effective feature selection algorithm called Temporal Constraint based on Feature Selection algorithm and also proposes a classification algorithm called hybrid decision tree. This hybrid decision tree has been developed by extend...
متن کاملIntrusion Detection based on a Novel Hybrid Learning Approach
Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013